Mark Scheme 4736 June 2006

4736

physicsandmathstutor.com

Mark Scheme

1	(i)	2 4 3 3 2 5 4		
		Box 1 2 4 2 Box 2 3 3 Box 3 5 Box 4 4	M1 A1 [2]	For packing these seven weights into boxes with no more than 8 kg total in each box For this packing
	(ii)	5 4 4 3 3 2 2	B1	For putting the weights into decreasing order (may be implied from packing)
		Box 1 5 3 Box 2 4 4	M1	For packing the seven weights into three boxes with no more than 8 kg total in each
		Box 3 3 2 2	A1 [3]	box For this packing
	(iii)	15×2^2 = 60 seconds	M1 A1 [2]	For a correct calculation For 60 or 60 seconds or 1 minute
				7
2	(i)			Graphs may be in any order
			M1 A1 [2]	For a reasonable attempt For a graph that is topologically equivalent to one of these graphs
		graph A graph B graph C other solutions:	M1 A1 [2]	For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs
		or V	M1 A1 [2]	For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	The graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not all even
				7

physicsandmathstutor.com

4736

Mark Scheme

3	(i)	Travelling salesperson	B1 [1]	Identifying TSP by name
	(ii)	A - B - E - G - F - D - C - A 130 (minutes) Shortest possible time \leq 130 minutes	M1 A1 B1 B1 [4]	For starting with $A - B - E - G$ For this closed tour For 130 For less than or equal to their time, with units
	(iii)	Order of connecting: B , E , G , F , D , C B 20 E or B 20 E	B1	For a valid vertex order (or arc order) for their starting point
			M1	For a diagram or listing showing a tree connecting the vertices <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> and <i>G</i> but not <i>A</i>
			A1 M1 M1	For a diagram showing one of these trees (vertices must be labelled but arc weights are not needed)
		C F C F Lower bound = $10 + 15 + 95$ = 120 minutes = 120 minutes	A1 [6]	For stating or using the total weight of their tree For stating or using <i>AB</i> and <i>AD</i> or 10 + 15 For 120 or calculating 25 + their 95, with units
	(iv)	A - B - E - G - F - C - D - A or this in reverse	M1 A1 [2]	For a reasonable attempt For a valid tour of weight 125 13

4736

physicsandmathstutor.com

Mark Scheme

4	(i)	x <u>≤</u> 2	B1		Strict inequalities used, penalise first time
		y <u>></u> 1	B1		only
		y <u><</u> 2x	B1		All inequalities reversed, penalise first time
		x + y ≤ 4	B1	[4]	only
	(ii)	(2, 1), (2, 2)	B1		Both of these
		(1/2, 1)	B1		This vertex in any exact form
		$(1\frac{1}{3}, 2\frac{2}{3})$	B1	[3]	This vertex in any exact form or correct to 3 sf
	(iii)	$\begin{array}{cccc} x & y & P = x + 2y \\ 2 & 1 & 4 \\ 2 & 2 & 6 \end{array}$	M1		Evidence of checking value at any vertex or
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			using a sliding profit line
		$x = 1\frac{1}{3}, y = 2\frac{2}{3}$	A1		Their x and y values at maximum in any
		(may be given in coordinate form)			exact form or correct to 3 sf
		$P = 6\frac{2}{3}$	A1	[3]	Their maximum <i>P</i> value in any exact form or correct to 3 sf
	(iv)	x y Q = 2 x - y			
		2 1 3 2 2 2			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		Evidence of checking value at any vertex or using a sliding profit line
		Q = 0	A1		0 (cao)
		(x, y) can be any point on the line segment joining ($\frac{1}{2}$, 1) and ($1\frac{1}{3}$, $2\frac{2}{3}$)	A1	[3]	The edge of the feasible region where $y = 2x$ No follow through
	(v)	$P = Q \Longrightarrow 2x - y = x + 2y$	M1		For considering $P = Q$, or equivalent
		$\Rightarrow x = 3y$	A1		For this line, or any equivalent reasoning
		$y = \frac{1}{3}x$ lies entirely in the shaded region	A1	[3]	For explanation of why there are no solutions
					16

physicsandmathstutor.com

4736

Mark Scheme

5	(i)	2x - 5y + 2z + s = 10										
		2x + 3z + t = 30								B1	[1]	Slack variables used correctly
	(ii)	Р	х	y	z	s	t			M1		For overall structure correct, including two
		1	-1	2	3	0	0	0				slack variable columns and column for RHS
		0	2	-5	2	1	0	10		A1	[2]	(condone omission of <i>P</i> column or labels) For a completely correct initial tableau, with
		0	2	0	3	0	1	30			[2]	no extra constraints added (condone
			_	-			_					variations in order of rows or columns)
	(iii)	Pivot on x column since it is the only column										
		with a negative value in the objective row								B1		For negative in objective row, top row, pay-
		$10 \div 2 = 5$ 5 < 15 so pivot on this row								D1	[0]	off row, or equivalent For these two divisions shown
	(5.)	30 ÷ 2			<u> </u>					B1 B1	[2]	
	(iv)	New row 2 = row 2 ÷ 2 New row 1 = row 1 + new row 2								B1	[2]	For dealing with the pivot row correctly For dealing with the other rows correctly
		New row $3 = row 3 - 2 \times new row 2$									[~]	May be coded by rows of table
		1 0 -0.5 4 0.5 0 5								M1		For updating their pivot row correctly
		0 1 -2.5 1 0.5 0 5							1	M1		For a reasonable attempt at updating other
			0	5	1	-1		20		A1	[3]	rows
												For correct values in tableau (condone
												consistent order of rows or columns). Do not follow through errors in initial tableau or pivot
												choice.
		x = 5, y = 0, z = 0								B1		For reading off x, y and z from their tableau
		<i>P</i> = 5								B1		For reading off <i>P</i> from their tableau
		Not the maximum feasible value of <i>P</i> since							nce	B1	[3]	'No' seen or implied and a correct reason
		there is still a negative value in the objective row										13
		objec	tive ro	W								13

physicsandmathstutor.com

4736

Mark Scheme

6 (a)	1 0 3 24 7 45 A B C	 ANSWERED ON INSERT M1 Values correct at <i>B</i>, <i>D</i> and <i>E</i> (condone temporary labels implied from permanent labels) M1 Both 54 and 37 seen at <i>H</i> and both 51 and 47 seen at <i>G</i> (method)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 A1 All temporary labels correct <u>and no extras</u> B1 All permanent labels correct B1 Order of labelling correct (condone boxes consistently swapped over)
	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	B1 For this route, including end vertices (cao) B1 [7] For 48 (cao)
(b) (i)	A and J are the only odd nodes 48 + 300 = 348 metres	B1Identifying odd nodes (or by implication)M1For their 48 + 300 (or their 300)A1[3]348 (cao)
(ii)	Odd nodes A, B, H, J AB = 24 $AH = 37$ $AJ = 48HJ = 11$ $BJ = 38$ $BH = 34Repeat AB and HJ = 35300 - 30 = 270$ metres Shortest distance = $270 + 35 = 305$ metres	B1Identifying odd nodes (or by implication)B1For distances from A – or from their DijkstraB1For distances HJ, BJ, BH correctM1Choosing their least pairing or by implicationM1Or by implicationA1[6]305 (cao)
		16