Mark Scheme 4736 June 2006

1	(i)	2 4 3 3 2 5 4 Box 1 $\mathbf{2}$ $\mathbf{4}$ $\mathbf{2}$ Box 2 $\mathbf{3}$ $\mathbf{3}$ Box 3 $\mathbf{5}$ Box 4 $\mathbf{4}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	For packing these seven weights into boxes with no more than 8 kg total in each box For this packing
	(ii)	5 4 4 3 3 2 2 Box 1 5 3 Box 2 $\mathbf{4}$ $\mathbf{4}$ Box 3 $\mathbf{3}$ $\mathbf{2}$ 2	B1 M1 A1 [3]	For putting the weights into decreasing order (may be implied from packing) For packing the seven weights into three boxes with no more than 8 kg total in each box For this packing
	(iii)	$\begin{aligned} & 15 \times 2^{2} \\ & =60 \text { seconds } \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 [2] } \end{array}$	For a correct calculation For 60 or 60 seconds or 1 minute 7
2	(i)	other solutions: or	M1 A1 [2] \qquad M1 A1 [2] \qquad M1 A1 [2]	Graphs may be in any order For a reasonable attempt For a graph that is topologically equivalent to one of these graphs For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	TThe graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not ail even 7

3	(ii)	Travelling salesperson $A-B-E-G-F-D-C-A$ 130 (minutes) Shortest possible time $\leq \mathbf{1 3 0}$ minutes Order of connecting: B, E, G, F, D, C	B1 [1 M1 A1 B1 B1 [4] B1 M1 A1 M1 M1 A1 [6]	Identifying TSP by name For starting with $A-B-E-G-\ldots$ For this closed tour For 130 For less than or equal to their time, with units For a valid vertex order (or arc order) for their starting point For a diagram or listing showing a tree connecting the vertices B, C, D, E, F and G but not A For a diagram showing one of these trees (vertices must be labelled but arc weights are not needed) For stating or using the total weight of their tree For stating or using $A B$ and $A D$ or $10+15$ For 120 or calculating $25+$ their 95 , with units
	(iv)	$\boldsymbol{A}-\boldsymbol{B}-\boldsymbol{E}-\boldsymbol{G}-\boldsymbol{F}-\boldsymbol{C}-\boldsymbol{D}-\boldsymbol{A}$ or this in reverse	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	For a reasonable attempt For a valid tour of weight 125

4	(i)	$\begin{aligned} & x \leq 2 \\ & y \geq 1 \\ & y \leq 2 x \\ & x+y \leq 4 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 [4] } \\ & \hline \end{aligned}$	Strict inequalities used, penalise first time only All inequalities reversed, penalise first time only
	(ii)	$\begin{aligned} & (2,1),(2,2) \\ & (1 / 2,1) \\ & (11 / 3,2 / 3) \end{aligned}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	Both of these This vertex in any exact form This vertex in any exact form or correct to 3 sf
	(iii)	x y $P=x+2 y$ 2 1 4 2 2 6 $1 / 2$ 1 $21 / 2$ $11 / 3$ $22 / 3$ $62 / 3$$x=11 / 3, y=22 / 3$ (may be given in coordinate form) $P=6 \frac{2}{3}$	M1 A1 A1 [3]	Evidence of checking value at any vertex or using a sliding profit line Their x and y values at maximum in any exact form or correct to 3 sf Their maximum P value in any exact form or correct to 3 sf
	(iv)	x y $Q=2 x-y$ 2 1 3 2 2 2 $1 / 2$ 1 0 $11 / 3$ $22 / 3$ 0$Q=0$ (x, y) can be any point on the line segment joining ($1 / 2,1$) and ($11 / 3,22 / 3$)	M1 A1 A1 [3]	Evidence of checking value at any vertex or using a sliding profit line 0 (cao) The edge of the feasible region where $y=2 x$ No follow through
	(v)	$\begin{aligned} & P=Q \Rightarrow 2 x-y=x+2 y \\ & \Rightarrow x=3 y \\ & y=1 / 3 x \text { lies entirely in the shaded region } \end{aligned}$	Mi A1 A1 [3]	For considering $P=Q$, or equivalent For this line, or any equivalent reasoning For explanation of why there are no solutions 16

5	(i)	$\begin{aligned} & 2 x-5 y+2 z+s=10 \\ & 2 x+3 z+t=30 \end{aligned}$							B1 [1]	Slack variables used correctly
	(ii)	P		\| y	z	s			$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	For overall structure correct, including two slack variable columns and column for RHS (condone omission of P column or labels) For a completely correct initial tableau, with no extra constraints added (condone variations in order of rows or columns)
		1	-1	2	3	0	0	0		
		0	2	-5	2	1	0	10		
			-	,				30		
	(iii)	Pivot on x column since it is the only column with a negative value in the objective row $10 \div 2=5$ $5<15$ so pivot on this row $30 \div 2=15$							$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & {[2]} \end{array}$	For negative in objective row, top row, payoff row, or equivalent For these two divisions shown
	(iv)	New row $2=$ row $2 \div 2$ New row 1 = row $1+$ new row 2 New row 3 = row 3-2× new row 2							$\begin{array}{\|l\|l} \text { B1 } \\ \text { B1 } \end{array}$	For dealing with the pivot row correctly For dealing with the other rows correctly May be coded by rows of table
		1	0	-0.5	4	0.5	0	5	M1	For updating their pivot row correctly
		0		-2.5	1	0.5	0	5	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	For a reasonable attempt at updating other rows
		0	0	5	1	-1	1	20		For correct values in tableau (condone
										consistent order of rows or columns). Do not follow through errors in initial tableau or pivot choice.
		$\begin{aligned} & x=5, y=0, z=0 \\ & P=5 \end{aligned}$ Not the maximum feasible value of P since there is still a negative value in the objective row							$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	For reading off x, y and z from their tableau For reading off P from their tableau 'No' seen or implied and a correct reason 13

